Ohm's Law and Power

Al Penney
 V01NO

Voltage and Current

As Voltage is increased, Current also increases.

Ohm's Law

- Relationship between Voltage, Current and Resistance can be expressed mathematically as:

$$
E=I x R
$$

Where
E is measured in Volts;
I is measured in Amps; and
R is measured in Ohms.

Ohm's Law

The equation can be re-written to determine any of the 3 variables if the other two are known:

$$
I=E / R
$$

And

$$
R=E / I
$$

Al Penney

Ohms Law Triangle

Remember the Units:

- E is measured in VOLTS
- I is measured in AMPS
- R is measured in OHMS

Ohms Law Triangle (Okay - Circle!)

I = AMPERES (CURRENT)
R $=$ OHMS (RESITANCE)
$\mathrm{E}=$ VOLTS (ELECTROMOTIVE FORCE)

$$
R=\frac{E}{I}
$$

Al Penney

Ohms Law Problem \#1

What is the current?

Ohms Law Problem \#1

What is the current?

Consult the Ohms Law Triangle:

Ohms Law Problem \#1

What is the current?

Consult the Ohms Law Triangle:

$I=E / R$

Ohms Law Problem \#1

What is the current?

I = E/R
I = 12 Volts / 96 Ohms
I =

Ohms Law Problem \#1

What is the current?

$I=E / R$
$I=12$ Volts $/ 96$ Ohms
$I=0.125$ Amps

Ohms Law Problem \#2

What is the voltage?

Ohms Law Problem \#2

What is the voltage?

Consult the Ohms Law Triangle:

Ohms Law Problem \#2

What is the voltage?

Consult the Ohms Law Triangle:

$E=I x R$

Al Penney VO1NO

Ohms Law Problem \#2

What is the voltage?

$\mathrm{E}=\mathrm{IX} \mathrm{R}$
$=1.5$ Amps $\times 15$ Ohms

Ohms Law Problem \#2

What is the voltage?

$\mathrm{E}=\mathrm{IX} \mathrm{R}$
$=1.5$ Amps $\times 15$ Ohms
$=22.5$ Volts

Ohms Law Problem \#3

What is the resistance?

Ohms Law Problem \#3

What is the resistance?

Consult the Ohms Law Triangle:

Ohms Law Problem \#3

What is the resistance?

Consult the Ohms Law Triangle:
$R=E / I$

Ohms Law Problem \#3

What is the resistance?

$$
\begin{aligned}
R & =E / I \\
& =150 \text { millivolts } / 30 \text { milliamps }
\end{aligned}
$$

Ohms Law Problem \#3

- REMEMBER the UNITS!
-150 millivolts $=150 / 1000$ volts $=0.15$ volts
-30 milliamps $=30 / 1000 \mathrm{amps}=0.03 \mathrm{amps}$

Ohms Law Problem \#3

What is the resistance?

$$
\begin{aligned}
R & =E / I \\
& =150 \text { millivolts } / 30 \text { milliamps } \\
& =0.15 \text { Volts } / 0.03 \mathrm{Amps}
\end{aligned}
$$

Ohms Law Problem \#3

What is the resistance?

$$
\begin{aligned}
\text { R } & =E / I \\
& =150 \text { millivolts } / 30 \text { milliamps } \\
& =0.15 \text { Volts } / 0.03 \text { Amps } \\
& =5 \text { Ohms }
\end{aligned}
$$

Resistors in Series

- When resistors are in SERIES, the total resistance is the SUM of the individual resistances.

Resistors in Series

Resistors in Series

$$
\mathrm{R}_{\text {Total }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \mathrm{M}
$$

Resistors in Series

Resistors in Series

Resistors in Parallel

- When resistors are in Parallel, the total resistance is given by the following equation:

$$
1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots . .+1 / R_{N}
$$

Resistors in Parallel

B

Resistors in Parallel

B
$1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$

Resistors in Parallel

B
$1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$ $1 / R_{\text {Total }}=1 / 25+1 / 75+1 / 50+1 / 25$

Resistors in Parallel

B
$1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$
$1 / R_{\text {Total }}=1 / 25+1 / 75+1 / 50+1 / 25=6 / 150+2 / 150+3 / 150+6 / 150$

Resistors in Parallel

B
$1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$
$1 / R_{\text {Total }}=1 / 25+1 / 75+1 / 50+1 / 25=6 / 150+2 / 150+3 / 150+6 / 150$ $1 / R_{\text {Total }}=17 / 150 \Omega$

Resistors in Parallel

B
$1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+1 / R_{4}$
$1 / R_{\text {Total }}=1 / 25+1 / 75+1 / 50+1 / 25=6 / 150+2 / 150+3 / 150+6 / 150$
$1 / R_{\text {Total }}=17 / 150 \Omega$
$R_{\text {Total }}=150 / 17 \Omega=8.82 \Omega$

Influencing the Flow Rate on a Tollway

Current in a Series Circuit

- The current through each resistor in a Series Circuit is identical.

Voltage in Series Circuits

- The sum of all the voltages across each resistor in a Series Circuit will equal the source voltage.

$$
E_{\text {source }}=E_{R 1}+E_{R 2}+E_{R 3}
$$

To Calculate Voltage Drop...

1. Determine Total Resistance

$$
\begin{aligned}
& \mathbf{R}_{\text {Total }}=R_{1}+R_{2}+R_{3} \\
& \mathbf{R}_{\text {Total }}=
\end{aligned}
$$

1. Determine Total Resistance

$$
R_{\text {Total }}=R_{1}+R_{2}+R_{3}
$$

$$
R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega
$$

$$
R_{\text {Total }}=40 \Omega
$$

2. Determine Current

$R_{\text {Total }}=R_{1}+R_{2}+R_{3}$

$R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega$
$R_{\text {Total }}=40 \Omega$
$I=E / R$
I =

2. Determine Current


```
\(R_{\text {Total }}=R_{1}+R_{2}+R_{3}\)
\(R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega\)
\(R_{\text {Total }}=40 \Omega\)
I = E/R
I = 20 Volts / 40 Ohms
I = 0.5 Amps
```


3. Determine Voltage Drops

$R_{\text {Total }}=R_{1}+R_{2}+R_{3}$
$R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega$
$R_{\text {Total }}=40 \Omega$
$I=E / R$
$I=20$ Volts $/ 40$ Ohms
$I=0.5$ Amps
$E_{R 2}=I \times R_{2}$
$E_{R 2}=$

$$
\begin{aligned}
& E_{R 3}=I \times R_{3} \\
& E_{R 3}=
\end{aligned}
$$

3. Determine Voltage Drops

$R_{\text {Total }}=R_{1}+R_{2}+R_{3}$
$R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega$
$R_{\text {Total }}=40 \Omega$
$I=E / R$
I = 20 Volts / 40 Ohms
$\mathrm{I}=0.5 \mathrm{Amps}$

$E_{R 1}=I \times R_{1}$

$E_{R 2}=I \times R_{2}$
$E_{R 3}=I \times R_{3}$
$E_{\text {R2 }}=0.5$ Amps $\times 15 \Omega$
$\mathrm{E}_{\mathrm{R} 2}=7.5$ Volts

4. Check Your Results!


```
\(R_{\text {Total }}=R_{1}+R_{2}+R_{3}\)
\(R_{\text {Total }}=5 \Omega+15 \Omega+20 \Omega\)
\(R_{\text {Total }}=40 \Omega\)
I = E/R
I = 20 Volts / 40 Ohms
I = 0.5 Amps
```

$$
\begin{array}{rll}
E_{R 1}=I \times R_{1} & E_{R 2}=I \times R_{2} & E_{R 3}=I \times R_{3} \\
E_{R 1}=0.5 \text { Amps } \times 5 \Omega & E_{R 2}=0.5 \text { Amps } \times 15 \Omega & E_{R 3}=0.5 \mathrm{An} \\
E_{R 1}=2.5 \text { Volts } & E_{R 2}=7.5 \text { Volts } & E_{R 3}=10 \mathrm{Vol} \\
& E_{\text {source }}=E_{R 1}+E_{R 2}+E_{R 3} & \\
E_{\text {source }} & =2.5 \mathrm{~V}+7.5 \mathrm{~V}+10 \mathrm{~V}=20 \mathrm{~V}
\end{array}
$$

Voltage in Parallel Circuits

- The voltage applied to each resistor in a Parallel Circuit is the same as the source voltage.

$E_{\text {source }}=E_{R 1}=E_{R 2}=E_{R 3}=E_{R 4}$

Current in a Parallel Circuit

- The total current in a Parallel Circuit is divided among the resistors.
- The sum of the currents through each resistor equals the total current.

To Calculate Currents...

Determine Equivalent Resistance

Determine Equivalent Resistance

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K}
\end{aligned}
$$

Determine Equivalent Resistance

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000
\end{aligned}
$$

Determine Equivalent Resistance


```
\[
1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3}
\]
\[
1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K}
\]
\[
1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000
\]
\[
1 / R_{\text {Total }}=5 / 1000
\]
\[
R_{\text {Total }}=1000 / 5=200 \Omega
\]
```


Determine Overall Current

AI Penney

Determine Overall Current

AI Penney

Determine Overall Current

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps }
\end{aligned}
$$

Determine Individual Currents

AI Penney
VO1NO

Determine Individual Currents

$$
I_{R 1}=E / R_{1}
$$

$$
I_{R 2}=E / R_{2}
$$

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps } \\
& \\
& I_{R 3}=E / R_{3}
\end{aligned}
$$

Determine Individual Currents

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& I_{R_{1}}=E / R_{1} \\
& I_{R_{1}}=100 \mathrm{~V} / 500 \Omega \\
& I_{R_{1}}=
\end{aligned}
$$

$$
I_{R 2}=E / R_{2}
$$

$$
I_{R 2}=100 \mathrm{~V} / 500 \Omega
$$

$$
I_{\mathrm{R} 2}=
$$

Determine Individual Currents

$$
\begin{aligned}
& I_{R_{1}}=E / R_{1} \\
& I_{R 1}=100 \mathrm{~V} / 500 \Omega \\
& I_{R_{1}}=0.2 \text { Amps }
\end{aligned}
$$

$$
I_{R 2}=E / R_{2}
$$

$$
I_{R 2}=100 \mathrm{~V} / 500 \Omega
$$

$$
I_{\mathrm{R} 2}=0.2 \mathrm{Amps}
$$

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \mathrm{Amps} \\
& \\
& I_{R 3}=E / R_{3} \\
& I_{R 3}=100 \mathrm{~V} / 1000 \Omega \\
& I_{R 3}=0.1 \mathrm{Amps}
\end{aligned}
$$

Check your Answer!

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& I_{R 1}=E / R_{1} \\
& I_{R 1}=100 \mathrm{~V} / 500 \Omega \\
& I_{R 1}=0.2 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& I_{R 2}=E / R_{2} \\
& I_{R 2}=100 \mathrm{~V} / 500 \Omega \\
& I_{R 2}=0.2 \text { Amps }
\end{aligned}
$$

$I_{R 3}=E / R_{3}$ $I_{R 3}=100 \mathrm{~V} / 1000 \Omega$ $\mathrm{I}_{\mathrm{R} 3}=0.1 \mathrm{Amps}$
$I_{\text {Total }}=$

Check your Answer!

$$
\begin{aligned}
& I_{R 1}=E / R_{1} \\
& I_{R 1}=100 \mathrm{~V} / 500 \Omega \\
& I_{R 1}=0.2 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& I_{R 2}=E / R_{2} \\
& I_{R 2}=100 \mathrm{~V} / 500 \Omega \\
& I_{R 2}=0.2 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps }
\end{aligned}
$$

$$
I_{\text {Total }}=I_{R 1}+I_{R 2}+I_{R 3}=
$$

Check your Answer!

$$
\begin{aligned}
& 1 / R_{\text {Total }}=1 / R_{1}+1 / R_{2}+1 / R_{3} \\
& 1 / R_{\text {Total }}=1 / 500+1 / 500+1 / 1 \mathrm{~K} \\
& 1 / R_{\text {Total }}=2 / 1000+2 / 1000+1 / 1000 \\
& 1 / R_{\text {Total }}=5 / 1000 \\
& R_{\text {Total }}=1000 / 5=200 \Omega \\
& \\
& I=E / R \\
& I=100 \mathrm{~V} / 200 \Omega \\
& I=0.5 \text { Amps }
\end{aligned}
$$

$$
\begin{aligned}
& I_{R 1}=E / R_{1} \\
& I_{R 1}=100 \mathrm{~V} / 500 \Omega \\
& I_{R 1}=0.2 \text { Amps }
\end{aligned}
$$

$$
I_{R 2}=E / R_{2}
$$

$$
I_{R 3}=E / R_{3}
$$

$$
\mathrm{I}_{\mathrm{R} 2}=100 \mathrm{~V} / 500 \Omega
$$

$$
I_{R 3}=100 \mathrm{~V} / 1000 \Omega
$$

$$
\mathrm{I}_{\mathrm{R} 2}=0.2 \mathrm{Amps}
$$

$$
\mathrm{I}_{\mathrm{R} 3}=0.1 \mathrm{Amps}
$$

$$
I_{\text {Total }}=I_{R 1}+I_{R 2}+I_{R 3}=0.2+0.2+0.1=0.5 \mathrm{Amp}
$$

Series Parallel Combinations

Energy and Power

- Energy is the ability to do work.
- Two types: Kinetic and Potential
- A cell has Potential Energy - it stores chemical energy that can be released to do work.
- When electrons move against a resistance, work is done.
- The rate at which work is done is called Power

Power

- Basic unit of Power is the Watt, abbreviated W.
- In electrical systems, we can calculate power if we know any two of
- Voltage;
- Current; or
- Resistance.
$P=E x I=E^{2} / R=I^{2} \times R$

Calculating Power \#1

Calculating Power \#1

Calculating Power \#1

$$
\begin{aligned}
& P=E \times I=E^{2} / R=I^{2} \times R \\
& P=E^{2} / R \\
& P=12^{2} / 50 \\
& P=144 / 50 \\
& P=2.88 \text { Watts }
\end{aligned}
$$

Calculating Power \#2

Calculating Power \#2

Calculating Power \#2

Calculating Power \#3

Calculating Power \#3

Calculating Power \#3

$$
\begin{aligned}
& P=E \times I=E^{2} / R=I^{2} \times R \\
& P=I^{2} \times R \\
& P=0.24^{2} \times 50 \\
& P=0.0576 \times 50 \\
& P=2.88 \text { Watts }
\end{aligned}
$$

Circuit Calculator

Remember the Units - Ohms, Volts, Amps, Watts!!

Questions?

