Impedance, Resonance, and Filters

A Quick Review...

- Before discussing Impedance, we must first understand capacitive and inductive reactance.

Reactance

- Reactance is the opposition to the flow of Alternating Current (AC).
- Reactance has no effect on the flow of Direct Current (DC).

Capacitive Reactance

- Capacitive Reactance is the opposition to the flow of AC by capacitance.
- As the frequency of the AC increases, Capacitive Reactance decreases.
- The Symbol for Capacitive Reactance is $\mathbf{X}_{\mathbf{C}}$.
- $\mathbf{X}_{\mathbf{C}}$ is expressed in ohms.
- Even though it is expressed in ohms, power is not dissipated by Reactance! Energy stored in a capacitor during one part of the AC cycle is simply returned to the circuit during the next part of the cycle!

Capacitive Reactance

- Where:

$$
\begin{aligned}
& \text { F }=\text { frequency in Hertz } \\
& C=\text { capacitance in Farads } \\
& \pi=3.14
\end{aligned}
$$

Inductive Reactance

- Inductive Reactance is the opposition to the flow of current in an AC circuit caused by an inductor.
- As the frequency increases, Inductive Reactance also increases.
- The symbol for Inductive Reactance is $\mathbf{X}_{\mathbf{L}}$.
- Even though it is expressed in ohms, power is not dissipated by Reactance! Energy stored in an inductor's magnetic field during one part of the AC cycle is simply returned to the circuit during the next part of the cycle!

Inductive Reactance

$$
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}
$$

- Where:
$f=$ frequency in Hertz
$\mathrm{L}=$ inductance in henrys
$\pi=3.14$

Current versus Voltage

- In a simple resistive circuit, the current and voltage are always in phase.
- For reasons beyond the scope of the Basic Course, the current and voltage are not in phase in AC circuits that contain capacitance and/or inductance.
- The current across a capacitor leads the voltage by 90 degrees.
- The current across an inductor lags the voltage by 90 degrees.

Vector Representation

- When plotted as vectors, series circuits containing Inductance, Capacitance and Resistance (LCR) can be represented as such:
$\uparrow \mathbf{X}_{\mathrm{L}}$ Inductive Reactance

Resistance

X_{C} Capacitive Reactance

Inductive vs Capacitive Reactance

- Inductive and Capacitive Reactance cannot be added together to give an overall reactance.
- In fact, they tend to cancel each other out.

Al Penney
VO1NO

Impedance

- When a circuit contains both resistance and reactance, the opposition to the flow of AC is called Impedance, abbreviated \mathbf{Z}.
- Because Resistance and Reactance are not in phase however, we must use vectors to determine the Impedance, even if Inductive and Capacitive Reactance have partly cancelled each other out.

Vector Addition

Through the use of vector addition, the

 Impedance can be determined...

Al Penney
VO1NO

LCR Circuit Impedance Formula

- Rather than plot vectors every time we need to determine impedance however, we can use a formula:

$$
\mathbf{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{c}}\right)^{2}}
$$

- Note that because the difference between X_{L} and X_{C} is squared, it doesn't matter what term is subtracted from what - you can use $\mathbf{X}_{\mathbf{C}}-\mathbf{X}_{\mathbf{L}}$ if that is more convenient.

Al Penney

LCR Circuit Impedance Example

- Resistance $=120$ Ohms
- $\mathrm{X}_{\mathrm{L}}=40$ Ohms
- $\mathrm{X}_{\mathrm{C}}=130$ Ohms
- $\mathrm{Z}=\operatorname{Sqr} \operatorname{Root}\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]$

LCR Circuit Impedance Example

- Resistance $=120$ Ohms
- $\mathrm{X}_{\mathrm{L}}=40$ Ohms
- $\mathrm{X}_{\mathrm{C}}=130$ Ohms
- $\mathrm{Z}=\operatorname{Sqr} \operatorname{Root}\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]$

$$
=\text { Sqr Root }\left[(120)^{2}+(130-40)^{2}\right]
$$

LCR Circuit Impedance Example

- Resistance $=120$ Ohms
- $\mathrm{X}_{\mathrm{L}}=40$ Ohms
- $X_{C}=130$ Ohms
- $\mathrm{Z}=\operatorname{Sqr} \operatorname{Root}\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]$

$$
\begin{aligned}
& =\text { Sqr Root }\left[(120)^{2}+(130-40)^{2}\right] \\
& =\text { Sqr Root }[14400+8100]
\end{aligned}
$$

LCR Circuit Impedance Example

- Resistance $=120$ Ohms
- $\mathrm{X}_{\mathrm{L}}=40$ Ohms
- $\mathrm{X}_{\mathrm{C}}=130$ Ohms
- $\mathrm{Z}=\operatorname{Sqr} \operatorname{Root}\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]$
$=$ Sqr Root $\left[(120)^{2}+(130-40)^{2}\right]$
$=$ Sqr Root [$14400+8100$]
$=$ Sqr Root [22500]

LCR Circuit Impedance Example

- Resistance $=120$ Ohms
- $\mathrm{X}_{\mathrm{L}}=40$ Ohms
- $\mathrm{X}_{\mathrm{C}}=130$ Ohms
- $\mathrm{Z}=\operatorname{Sqr} \operatorname{Root}\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]$
$=$ Sqr Root $\left[(120)^{2}+(130-40)^{2}\right]$
$=$ Sqr Root [$14400+8100$]
= Sqr Root [22500]
$=150$ Ohms

LCR Circuit Impedance Example

$$
\mathrm{X}_{\mathrm{L}}=40 \mathrm{Ohms}
$$

Resistance $=120$ Ohms

LCR Circuit Impedance Example

Al Penney VO1NO

LCR Circuit Impedance Example

$$
\begin{gathered}
\mathrm{X}_{\mathrm{L}}=40 \text { Ohms } \\
\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}=90 \text { Ohms } \\
\mathrm{X}_{\mathrm{C}}=130 \text { Ohms }
\end{gathered}
$$

LCR Circuit Impedance Example

$$
\begin{gathered}
\mathrm{X}_{\mathrm{L}}=40 \text { Ohms } \\
\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}=90 \text { Ohms } \\
\mathrm{X}_{\mathrm{C}}=130 \text { Ohms }
\end{gathered}
$$

Impedance Matching

- Many electronic devices and circuits (speakers, microphones, antennas, transmission lines, amplifiers etc.) have their own characteristic impedance.
- When interconnecting these devices and circuits, maximum power transfer will take place if the various impedances are matched.

Matching with Transformers

- Transformers are often used to match impedances which are primarily resistive.
- This is especially true for antenna and transmission line systems.
- Take the matching transformer (Balun BALanced to UNbalanced) used to match 300 Ohms to 75 Ohms in TV systems.

300 - 75 Ohm Balun

- These matching transformers are widely used for TV systems, and consist of a small ferrite core with two windings.
- In addition to the impedance transformation, it also converts between a balanced system and an unbalanced system.

Al Penney
VO1NO

Number of Turns

- Different impedances can be matched quite easily by adjusting the number of turns using the following formula:

$$
\mathbf{Z}_{\mathrm{S}} / \mathbf{Z}_{\mathrm{P}}=\mathbf{N}_{\mathrm{S}}^{2} / \mathbf{N}_{\mathbf{P}}^{2}
$$

Or...

$$
\mathbf{N}_{\mathbf{S}} / \mathbf{N}_{\mathbf{P}}=\sqrt{\mathbf{Z}_{\mathbf{S}} / \mathbf{Z}_{\mathbf{P}}}
$$

Number of Turns - Example

- $\mathrm{Z}_{\mathrm{S}}=300$ Ohms, $\mathrm{Z}_{\mathrm{P}}=75 \mathrm{Ohms}$

$$
\begin{aligned}
& \mathbf{N}_{S} / \mathbf{N}_{\mathbf{P}}=\sqrt{\mathbf{Z}_{S} / \mathbf{Z}_{\mathbf{P}}} \\
& \mathbf{N}_{\mathrm{S}} / \mathbf{N}_{\mathbf{P}}=\sqrt{\mathbf{3 0 0} / \mathbf{7 5}}=\sqrt{\mathbf{4}}=\mathbf{2}
\end{aligned}
$$

- The turns ratio is $2: 1$ ie: for every turn on the primary winding, there are two on the secondary winding.
- The actual number of turns depends on the core material.

Resonance

- In electronic circuits, a special condition exists when Inductive and Capacitive Reactance are equal to each other $\left(\mathbf{X}_{\mathbf{L}}=\mathbf{X}_{\mathbf{C}}\right)$.
- When that happens in Series LCR circuits, $\mathbf{X}_{\mathbf{L}}$ and X_{C} cancel each other out, leaving only Resistance to oppose the flow of AC current.
- This condition is know as Resonance, and occurs at only one frequency, known as the Resonant Frequency (\mathbf{F}_{R}).

Resonant Frequency

Al Penney
VO1NO

Resonant Frequency

- At Resonance, $\mathbf{X}_{\mathbf{C}}=\mathbf{X}_{\mathbf{L}}$ so

$$
\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}=\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}
$$

- With a little mathematical wizardry, we can rearrange that equation to determine the Resonant Frequency $\mathbf{F}_{\mathbf{R}}$ as follows...

Resonant Frequency

$$
F_{R}=\frac{1}{2 \pi \sqrt{L C}}
$$

- Where:
$\mathrm{F}_{\mathrm{R}}=$ Resonant Frequency in Hertz
$\mathrm{L}=$ Inductance in henrys
C = Capacitance in Farads

Resonance is not always a good thing however...

Al Penney

Tacoma Narrows suspension bridge
Al Penney
VO1NO

Tuned Circuits

- Circuits containing Capacitors and Inductors are often referred to as Tuned Circuits.
- They have many uses in electronics - every time you tune a radio, you are varying the resonant frequency of a tuned circuit.

Series LCR Circuit

- When a Series LCR circuit is in Resonance, current in that circuit is at its greatest (the Impedance is at its lowest).
- There are two ways to achieve Resonance in Series LCR circuits:
- Vary the applied frequency until we find the point where $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}$.
- Keep the frequency constant and vary the value of the capacitance or inductance, or both, until $\mathrm{X}_{\mathrm{C}}=$ X_{L}.

Series LCR Circuit

Al Penney

Series LCR Circuit Impedance

L/C in Series . 1H/.1uF

Varying the Frequency

Varying Capacitance or Inductance

Parallel LCR Circuits

Al Penney VO1NO

Parallel LCR Circuits

- In a Parallel LCR Circuit, the current is lowest at Resonance (the impedance is at its highest).
- Parallel LCR circuits are used to reject a specific frequency while allowing all others to pass.

Parallel LCR Circuit Impedance

L/C in Parallel .1H/.1uF

.1H Incuctar
Al Penney VOINO

Parallel LCR Circuit Current

Al Penney
VO1NO

Circuit Quality

- In a resonant series LCR circuit, energy is stored alternately in the electric field of the capacitor, and then the magnetic field of the inductor.
- This causes a current to flow between them.
- Anything that removes energy from this circuit broadens the range of frequencies affected by the circuit, but increases the impedance at the resonant frequency.

Circuit Quality

- The "Q", or Quality of a series LCR circuit is defined as the ratio of either $\mathbf{X}_{\mathbf{C}}$ or $\mathbf{X}_{\mathbf{L}}$ to the resistance in the circuit.
- Below resonance " \mathbf{Q} " $=\mathbf{X}_{\mathbf{C}} / \mathbf{R}$
- Above resonance " \mathbf{Q} " $=\mathbf{X}_{\mathbf{L}} / \mathbf{R}$
- At resonance $X_{C}=X_{L}$
- A "Q" of $\mathbf{1 0 0}$ is high, while a "Q" of $\mathbf{1 0}$ is low.

Filters

- By the proper selection of capacitors and inductors, it is possible to design Filters that can pass desired frequencies, and reject unwanted frequencies.

Al Penney VO1NO

Crystal Radio Tuned Circuit

Al Penney
VO1NO

6 Transistor Radio

Al Penney
VO1NO

6 Transistor Radio

6 Transistor Radio

Transformers

