Transmission Lines

Transmission Lines

- Enable signals from the radio to reach the antenna and vice versa.
- Also known as **feeders** or **feedlines**.
- Transmission Lines have 2 ends:
 - Source: where the power enters the feedline.
 - Load: where the power is transferred into a device or antenna.

Al Pennev

V**()1N(**)

Optimum Transmission Line

- Does not radiate signal from the line itself.
- No loss of signal passing through the line.
- Constant electrical characteristics throughout its length.

Unfortunately, there is no such thing as an ideal transmission line!

RF Transmission and Reception Feedline Types

- A feedline has inductance and capacitance distributed along its length.
- This offers reactance to AC in the feedline.
- Value of Capacitive and Inductive Reactance vary in opposite directions as frequency changes.
- This causes the impedance to remain the same over a wide range of frequencies.
- This is the **Characteristic** or **Surge Impedance**.

- Abbreviated Z_o
- Value depends on

- the physical dimensions of the line; and

- The relative positions of the conductors.
- Z_o = ratio of voltage to current at any given point.
- Value does not depend on length.

- Characteristic Impedance is an AC effect you cannot measure it using DC.
- Actual resistance losses are called Copper Losses.
- Skin Effect causes higher losses as frequency increases.

Cross-sectional area of a round conductor available for conducting DC current

"DC resistance"

Cross-sectional area of the same conductor available for conducting low-frequency AC

"AC resistance"

Cross-sectional area of the same conductor available for conducting high-frequency AC

"AC resistance"

Balanced Transmission Line

- Currents are equal but in opposite direction.
- This cancels the EM field.
- Therefore very little radiation from the line.

Al Pennev

VO1NC

Open Wire Feedline

- Two parallel wires separated (mostly) by air.
- Insulated spacers maintain distance.
- Characteristic Impedances 200 600 Ohms.

Insulated Twin Lead

- Two parallel conductors enclosed in a plastic sheath.
- TV Twin Lead has an impedance of 300 Ohms.

Ladder Line

- Variant of Insulated Twin Lead.
- To reduce losses, some of the plastic is cut away.
- Characteristic Impedance of 450 Ohms.

Al Pennev

VO1NO

$$Z_0 = \frac{276}{\sqrt{k}} \log \frac{d}{r}$$

Where,

- Z_0 = Characteristic impedance of line
 - d = Distance between conductor centers
 - r = Conductor radius
 - k = Relative permittivity of insulation Al Penney between conductors VO1NO

Advantages of Balanced Line

- Lower losses at high SWR than coax cable.
- Can be made at home.
- Often cheaper than coax cable.

Disadvantages of Balanced Line

- Spacing must be kept constant.
- Cannot be buried, laid on ground, or run alongside a conductor.
- Impedance varies in rain and with icing.
- Safety hazard if touched while transmitting.
- Impedance is generally higher than what most radios are designed for, so an impedance matching device is necessary.

Unbalanced Transmission Line

- One conductor at ground potential, the other carrying RF.
- Usually called Coaxial Cable, or "Coax".
- Most common type of feedline.

plastic jacket

dielectric insulator

metallic shield centre core

COAXIAL CABLE

Currents in Unbalanced Line

- Currents are Equal and Opposite Inside the Coaxial Cable.
- Because of Skin Effect, outside braid can be at ground potential.

$$d_1$$
 d_2

$$Z_0 = \frac{138}{\sqrt{k}} \log \frac{d_1}{d_2}$$

Where,

Z_0 = Characteristic impedance of line

- $d_1 =$ Inside diameter of outer conductor
- d₂ = Outside diameter of inner conductor
 - k = Relative permittivity of insulation between conductors

Advantages of Unbalanced Line

Al Pennev

VO1NO

- Can be run alongside metal or buried.
- Same impedance as that required by our radios.
- Convenient to use.
- Weatherproof.

Disadvantages of Unbalanced Line

- Higher losses than Balanced Feedline
- Losses increase with higher SWR.
- Water ingress a danger to coax cable.
- Kinking or bending too sharply can cause damage.
- Some connectors cause impedance "bumps".

Beware Cheap Coax Cable!

- Poor quality coax cable has poor braid coverage.
- This causes signal attenuation and is susceptible to interference.

Velocity Factor

- Radio signals take a finite amount of time to travel through a transmission line.
- Expressed as a ratio of the speed of an EM wave in free space, called the Velocity factor, or VF.
- Typical VF
 - Open Wire Feedline 80 92%
 - Ladder Line 91%
 - Coax (polyethylene dielectric) 66%
 - Coax (foamed polyethylene dielectric) 84%

Velocity factor =
$$\frac{v}{c} = \frac{1}{\sqrt{k}}$$

Where,

- v = Velocity of wave propagation
- c = Velocity of light in a vacuum
- k = Relative permittivity of insulation between conductors

Coax Cable Designations

- 50 Ohm cable.
- Lightweight diameter of a pencil.
- Okay for HF, but not long runs on VHF/UHF.
- Max power is a few hundred watts.

RG8/U

- Used to be the standard 50 Ohm cable.
- Influx of cheap "RG8 Type" cables caused US Government to change to RG213 as the standard 50 Ohm cable.
- Diameter ~ 1 cm.
- Much lower loss than RG-58.
- Full legal limit on HF.

RG213/U

- Quality 50 Ohm cable.
- Full legal limit on HF.
- RG214/U is identical but has 2 shields.

RG59/U

- 75 Ohm cable meant primarily for TV.
- Suitable for low power use on HF 400 watts.
- Also good for specialized receive antennas.
- RG11 is a higher power version.

Low Loss Coax Cable

- Use foam dielectric or plastic spacers to reduce dielectric losses.
- Also have larger center conductors to reduce copper losses.
- Rigid shield cable is called Hardline.
- Not required on HF, but necessary for weak signal or high power applications at VHF/UHF and up.

	PE Jacket
1-5/8" 7/8"S	Annularly corrugated copper tube
	Helically corrugated copper tube Foamed PE Dielectric
1-1/4" 7/8" 5/8"	
	Smooth copper tube
1/2" 3/8"	
	CCA or copper wire
1/2"S 1/4"S	Foamed PE Dielectric
	CCA or copper wire
	Helically corrugated copper tube
	PE Jacket

Nominal Characteristics of Commonly Used Transmission Lines

RG or Type	Part No Number	$m. Z_0$	VF %	Cap. pF/ft	Cent. Cond. AWG	Diel. Type	Shield Type	Jacket Matl	t OD inches	Max V (RMS)	1 MHz	1atched L 10	.oss (dB 100	/100) 1000
RG-6 RG-6	Belden 1694A Belden 8215	75 75	82 66	16.2 20.5	#18 Solid BC #21 Solid CCS	FPE PE	FC D	P1 PE	0.275 0.332	600 2700	0.2 0.4	.7 0.8	1.8 2.7	5.9 9.8
RG-8 RG-8 RG-8 RG-8 RG-8 RG-8 RG-8 RG-8	Belden 7810A TMS LMR400 Belden 9913 CXP1318FX Belden 9913F7 Belden 9914 TMS LMR400UF DRF-BF WM CQ106 CXP008 Belden 8237	50 50 50 50 50 50 50 50 50 50	86 85 84 83 82 85 84 84 78 66	23.0 23.9 24.6 24.0 24.6 24.8 23.9 24.5 24.5 24.5 26.0 29.5	#10 Solid BC #10 Solid CCA #10 Solid BC #10 Flex BC #11 Flex BC #10 Solid BC #10 Flex BC #9.5 Flex BC #13 Flex BC #13 Flex BC #13 Flex BC	FPE FPE FPE FPE FPE FPE FPE FPE FPE FPE	FCCCCCCCCCC FFCCCCCCS S	PE P1 P2N P1 P1 PE P2N P1 P1	0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405	600 600 600 600 600 600 600 600 600 600	0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2	0.4 0.4 0.4 0.6 0.5 0.4 0.5 0.6 0.5 0.6	1.2 1.3 1.3 1.5 1.5 1.4 1.6 1.8 1.8 1.9	4.0 4.1 4.5 4.8 4.8 4.9 5.2 5.3 7.1 7.4
RG-8X RG-8X RG-8X RG-8X RG-8X RG-8X	Belden 7808A TMS LMR240 WM CQ118 TMS LMR240UF Belden 9258 CXP08XB	50 50 50 50 50 50	86 84 82 84 82 80	23.5 24.2 25.0 24.2 24.8 25.3	#15 Solid BC #15 Solid BC #16 Flex BC #15 Flex BC #16 Flex BC #16 Flex BC	FPE FPE FPE FPE FPE FPE	FC FC FC S S	PE PE P2N PE P1 P1	0.240 0.242 0.242 0.242 0.242 0.242 0.242	600 300 300 300 600 300	0.2 0.2 0.3 0.2 0.3 0.3	0.7 0.8 0.9 0.8 0.9 0.9	2.3 2.5 2.8 3.1 3.1	7.4 8.0 8.4 9.6 11.2 14.0
RG-9	Belden 8242	51	66	30.0	#13 Flex SPC	PE	SCBC	P2N	0.420	5000	0.2	0.6	2.1	8.2
RG-11 RG-11	Belden 8213 Belden 8238	75 75	84 66	16.1 20.5	#14 Solid BC #18 Flex TC	FPE PE	S S	PE P1	0.405 0.405	600 600	0.2 0.2	0.4 0.7	1.3 2.0	5.2 7.1
RG-58 RG-58 RG-58 RG-58 RG-58A RG-58C RG-58A	Belden 7807A TMS LMR200 WM CQ124 Belden 8240 Belden 8219 Belden 8262 Belden 8259	50 52 52 53 50 50	85 83 66 66 73 66 66	23.7 24.5 28.5 28.5 26.5 30.8 30.8	#18 Solid BC #17 Solid BC #20 Solid BC #20 Solid BC #20 Flex TC #20 Flex TC #20 Flex TC	FPE FPE PE FPE FPE PE PE	FC FC S S S S S S	PE PE P1 P1 P2N P1	0.195 0.195 0.195 0.193 0.195 0.195 0.195 0.192	300 300 1400 1900 300 1400 1900	0.3 0.4 0.3 0.4 0.4 0.4 0.4	1.0 1.0 1.3 1.1 1.3 1.4 1.5	3.0 3.2 4.3 3.8 4.5 4.9 5.4	9.7 10.5 14.3 14.5 18.1 21.5 22.8
RG-59 RG-59 RG-59 RG-59	Belden 1426A CXP 0815 Belden 8212 Belden 8241	75 75 75 75	83 82 78 66	16.3 16.2 17.3 20.4	#20 Solid BC #20 Solid BC #20 Solid CCS #23 Solid CCS	FPE FPE FPE PE	S S S	P1 P1 P1 P1	0.242 0.232 0.242 0.242	300 300 300 1700	0.3 0.5 0.6 0.6	0.9 0.9 1.0 1.1	2.6 2.2 3.0 3.4	8.5 9.1 10.9 12.0
RG-62A RG-62B RG-63B	Belden 9269 Belden 8255 Belden 9857	93 93 125	84 84 84	13.5 13.5 9.7	#22 Solid CCS #24 Flex CCS #22 Solid CCS	ASPE ASPE ASPE	S S S	P1 P2N P2N	0.240 0.242 0.405	750 750 750	0.3 0.3 0.2	0.9 0.9 0.5	2.7 2.9 1.5	8.7 11.0 5.8
RG-142 RG-142B RG-174 RG-174	CXP 183242 Belden 83242 Belden 7805R Belden 8216	50 50 50 50	69.5 69.5 73.5 66	29.4 29.0 26.2 30.8	#19 Solid SCCS #19 Solid SCCS #25 Solid BC #26 Flex CCS	TFE TFE FPE PE	D D FC S	FEP TFE P1 P1	0.195 0.195 0.110 0.110	1900 1400 300 1100	0.3 0.3 0.6 1.9	1.1 1.1 2.0 3.3	3.8 3.9 6.5 8.4	12.8 13.5 21.3 34.0
RG-213 RG-214 RG-216 RG-217 RG-217 RG-217 RG-218 RG-223 RG-303 RG-303 RG-316 RG-393 RG-400	Belden 8267 CXP213 Belden 8268 Belden 9850 WM CQ217F M17/78-RG217 M17/79-RG218 Belden 84303 CXP TJ1316 Belden 84316 M17/127-RG393 M17/128-RG400	50 50 75 50 50 50 50 50 50 50 50	66 66 66 66 66 66 69.5 69.5 69.5 69.5 69	30.8 30.8 20.5 30.8 30.8 29.5 30.8 29.0 29.4 29.0 29.4 29.0	#13 Flex BC #13 Flex BC #13 Flex SPC #18 Flex SPC #10 Flex BC #10 Solid BC #10 Solid BC #19 Solid SPC #18 Solid SPC #18 Solid SPC #26 Flex SPC #12 Flex SPC #20 Flex SPC	PE PE PE PE PE PE PE FE TFE TFE TFE	S S D D D D S D S S S D D	P2N P2N P2N PE P2N P2N P2N FEP FEP FEP FEP	0.405 0.425 0.425 0.545 0.545 0.870 0.212 0.170 0.098 0.096 0.390 0.195	3700 600 3700 7000 7000 11000 1400 1200 900 5000 1400	0.2 0.2 0.2 0.1 0.1 0.1 0.4 0.3 1.2 1.2 0.2 0.4	0.6 0.6 0.7 0.4 0.2 1.2 1.2 2.7 2.7 0.5 1.1	1.9 2.0 1.9 2.0 1.4 1.4 0.8 4.1 3.9 8.0 8.3 1.7 3.9	8.0 8.2 8.0 7.1 5.2 3.4 14.5 13.5 26.1 29.0 6.1 13.2
LMR500 LMR500 LMR600 LMR600 LMR1200	TMS LMR500UF TMS LMR500 TMS LMR600 TMS LMR600UF TMS LMR1200	50 50 50 50 50	85 85 86 86 88	23.9 23.9 23.4 23.4 23.1	#7 Flex BC #7 Solid CCA #5.5 Solid CCA #5.5 Flex BC #0 Copper Tube	FPE FPE FPE FPE FPE	FC FC FC FC FC	PE PE PE PE PE	0.500 0.500 0.590 0.590 1.200	2500 2500 4000 4000 4500	0.1 0.1 0.1 0.1 0.04	0.4 0.3 0.2 0.2 0.1	1.2 0.9 0.8 0.8 0.4	4.0 3.3 2.7 2.7 1.3
Hardline 1/2" 1/2" 7/8" 7/8"	CATV Hardline CATV Hardline CATV Hardline CATV Hardline	50 75 50 75	81 81 81 81	25.0 16.7 25.0 16.7	#5.5 BC #11.5 BC #1 BC #5.5 BC	FPE FPE FPE FPE	SM SM SM SM	none none none none	0.500 0.500 0.875 0.875	2500 2500 4000 4000	0.05 0.1 0.03 0.03	0.2 0.2 0.1 0.1	0.8 0.8 0.6 0.6	3.2 3.2 2.9 2.9
LDF4-50A LDF5-50A LDF6-50A	Heliax -1/2" Heliax -7/8" Heliax - 1¼"	50 50 50	88 88 88	25.9 25.9 25.9	#5 Solid BC 0.355" BC 0.516" BC	FPE FPE FPE	CC CC CC	PE PE PE	0.630 1.090 1.550	1400 2100 3200	0.05 0.03 0.02	0.2 0.10 0.08	0.6 0.4 0.3	2.4 1.3 1.1
Parallel L TV Twinlead (Generic W WM CQ 55 WM CQ 55 WM CQ 55 WM CQ 55 Open-Wire	ines ad (Belden 9085) Belden 8225) Vindow Line 54 52 53 53 51 9 Line	300 300 405 420 440 450 450 600	80 91 91 91 91 91 91 92	4.5 4.4 2.5 2.7 2.5 2.5 2.5 1.1	#22 Flex CCS #20 Flex BC #18 Solid CCS #14 Flex CCS #16 Flex CCS #16 Flex CCS #18 Flex CCS #18 Solid CCS #12 BC	PE PE PE PE PE PE none	none none none none none none none	P1 P1 P1 P1 P1 P1 P1 P1 none	0.400 0.400 1.000 1.000 1.000 1.000 1.000	** 8000 10000 10000 10000 10000 12000	0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.3 0.2 0.08 0.08 0.08 0.08 0.08 0.08 0.06	1.4 1.1 0.3 0.3 0.3 0.3 0.3 0.3 0.2	5.9 4.8 1.1 1.1 1.1 1.1 1.1 0.7

Matched-Line Loss for 250 ft of Three Common Coaxial Cables

Comparisons of line losses versus frequency for 250-ft lengths of three different coax cable types: small-diameter RG58A, mediumdiameter RG8A, and ³/₄-inch OD 50-Ω Hardline. At VHF, the losses for the small-diameter cable are very large, while they are moderate at 3.5 MHz.

	3.5 MHz	3.5 MHz	28 MHz	28 MHz	146 MHz	146 MHz
	Matched-	Loss, 6:1	Matched-	Loss, 6:1	Matched-	Loss 6:1
Xmsn Line	Line Loss, dB	SWR, dB	Line Loss, dB	SWR, dB	Line Loss, dB	SWR, dB
RG-58A	1.9	4.0	6.3	9.3	16.5	21.6
RG-8A	0.9	2.2	3.0	5.4	7.8	10.8
³ /4" 50-Ω Hardline	0.2	0.5	0.7	1.8	2.1	4.2

Coax Connectors

- Enable coax cable to be connected to devices and antennas.
- Type depends on cable, use and frequency.
- Buy from reputable manufacturers.
- Look for Teflon insulation and silver coating.

Al Pennev

PL259 and SO239

- Called "UHF" connectors.
- Good on HF, somewhat useful on 2M, not any higher in frequency however.
- Connects to RG8/U and RG213/U cable.
- PL259 plugs into SO239.
- NOT weatherproof!

Using PL259 with RG58/U

- An UG175 adaptor is needed to attach a PL259 to RG58/U.
- Get the right one similar looking adaptors exist for RG59, but have a different diameter.

BNC Connectors

- "Bayonet Neill Concelman"
- Quick connect/disconnect.
- Good to 2 GHz or more, but limited in power handling capability.
- Not weatherproof.

N Connectors

- Named after Paul Neill, of Bell Labs.
- Fits RG8/u, RG213/U and other cables.
- Good to 11 GHz or higher, at full legal limit in lower bands.
- Waterproof.

F Connectors

- Used on RG59 and RG6 for TV applications.
- Some use them for receive antennas.
- Easy to attach, but not very strong or waterproof.

Adaptors

Care of Coax Cable

- Do not kink or bend cable too sharply the center conductor can migrate.
- Minimum bend radius is 5-10 times cable diameter.
- Protect from water ingress!
- Do not drag or step on cable.

Drip Loop

Baluns

- Balanced to Unbalanced
- Enables the transition from a balanced feedline to an unbalanced feedline and vice versa.
- Can be made with toroid or straight ferrites, or coax cable.

To Xmtr

Shield and Center Conductor to Antenna Horizontal Elements

Choke Balun

8 to 10 Turns of Coax, 8 to 10 Inches in Diameter

Coax to Transmitter

Voltage Standing Wave Ratio

- Abbreviated VSWR, or more commonly SWR.
- Measure of the effectiveness of the coupling between two transmission lines or between a transmission line and the source or load.
- If impedances not matched, some energy will be reflected back, setting up a standing wave in the transmission line.
- Expressed as a ratio... 1:1 is perfect, 2:1 acceptable,
 5:1 generally too high.

Impact of SWR

- High SWR may cause the transmitter to load incorrectly.
- It may cause high voltages to exist in the transmitter, damaging components.
- Modern solid state radios have SWR sensing circuits that fold power back when high SWR exists.

Impact of SWR

- Antenna tuner can hide improper matches, but will dissipate power as heat.
- High SWR also causes additional losses in the transmission line.

Calculating SWR

- SWR meter compares forward voltage $V_{\rm f}$ and reverse voltage $V_{\rm r}$
- SWR = $V_f + V_r / V_f V_r$
- Can also be calculated by comparing impedances of the load Z₀ and the line Z_L

• SWR =
$$Z_0 / Z_L$$

TRIO-KENWOOD CORPORATION

KENWOOD SWR-200A

TRIO-KENWOOD CORPORATION

Questions?

