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A flyback diode, is a diode that is placed with reverse polarity from the 

power supply and in parallel to the relay’s inductance coil. It is used to 

prevent the huge voltage spikes that happen when the power supply is 

disconnected. They are sometimes called “snubber diodes” and are a 

type of snubber circuit.

When the power supply is connected to the relay, the inductance coil’s 

voltage builds up to match that of the power source. The speed at which 

current can change in an inductor is limited by its time constant. In this 

case, the time it takes to minimize current flow through the coil is longer 

than the time it takes for the power supply to be removed. Upon 

disconnection, the inductance coil reverses its polarity in an attempt to 

keep current flowing according to its dissipation curve (i.e., % of 

maximum current flow with respect to time). This causes a huge voltage 

potential to build up on the open junctions of the component that 

controls the relay.

This voltage built up is called flyback voltage. It can result in an electrical 

arc and damage the components controlling the relay. It can also 

introduce electrical noise that can couple into adjacent signals or power 

connections and cause microcontrollers to crash or reset. If you have an 

electronics control panel that resets each time a relay is de-energized, 

https://learn.digilentinc.com/Documents/390
http://www.eetimes.com/document.asp?doc_id=1274125


it’s highly possible you have an issue with flyback voltage.

To mitigate this issue, a diode is connected with reverse polarity to the power 

supply. No current passes through the diode when the relay is energized. When 

the power supply is removed, the voltage polarity on the coil is inverted, and 

the diode becomes forward biased. The diode allows current to pass with 

minimal resistance and prevents flyback voltage from building up. Hence why it 

is called a flyback diode.
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Pretend you are wrapping your fingers around a thin rod (in other 

words, make a fist) and point your thumb in the direction of the current 

(I). The magnetic field will circle around your fist like in the following 

diagram. Additionally, the magnetic field will always point in the direction 

your fingers are curled. Use the following diagram for reference to both 

the new vectors and the first left hand rule.
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Whenever a current carrying conductor comes under a magnetic field, 
there will be a force acting on the conductor. The direction of this force 
can be found using Fleming’s Left Hand Rule (also known as ‘Flemings 
left-hand rule for motors’).

It is found that whenever a current carrying conductor is placed inside 
a magnetic field, a force acts on the conductor, in a direction 
perpendicular to both the directions of the current and the magnetic 
field.

https://www.electrical4u.com/a-current-carrying-conductor-within-a-magnetic-field/
https://www.electrical4u.com/magnetic-field/
https://www.electrical4u.com/electrical-conductor/
https://www.electrical4u.com/a-current-carrying-conductor-within-a-magnetic-field/
https://www.electrical4u.com/magnetic-field/
https://www.electrical4u.com/electrical-conductor/
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From the above equation for inductive reactance, if either 

the Frequency or the Inductance is increased the overall inductive 

reactance value of the inductor would also increase. As the frequency 

approaches infinity the inductors reactance would also increase towards 

infinity with the circuit element acting like an open circuit.

However, as the frequency approaches zero or DC, the inductors 

reactance would decrease to zero, causing the opposite effect acting 

like a short circuit. This means then that inductive reactance is 

“Proportional” to frequency and is small at low frequencies and high at 

higher frequencies and this demonstrated in the following curve:

The graph of inductive reactance against frequency is a straight line 

linear curve. The inductive reactance value of an inductor increases 

linearly as the frequency across it increases. Therefore, inductive 

reactance is positive and is directly proportional to frequency ( XL ∝ ƒ ) 
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Audio systems often use 1:1 transformers to isolate one part of a circuit from 

another e.g. interfaces between a radio’s audio/mic and a computer’s 

mic/speaker connections when using digital modes.
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Audio Impedance Matching

Al Penney

VO1NO

To obtain an impedance transformation ratio of 500:8, we would 

need a winding ratio equal to the square root of 500:8 (the square 

root of 62.5:1, or 7.906:1). With such a transformer in place, the 

speaker will load the amplifier to just the right degree, drawing 

power at the correct voltage and current levels to satisfy the 

Maximum Power Transfer Theorem and make for the most 

efficient power delivery to the load. The use of a transformer in 

this capacity is called impedance matching.

Anyone who has ridden a multi-speed bicycle can intuitively 

understand the principle of impedance matching. A human's legs 

will produce maximum power when spinning the bicycle crank at 

a particular speed (about 60 to 90 revolution per minute). Above 

or below that rotational speed, human leg muscles are less 

efficient at generating power. The purpose of the bicycle's "gears" 

is to impedance-match the rider's legs to the riding conditions so 

that they always spin the crank at the optimum speed.

If the rider attempts to start moving while the bicycle is shifted into 

its "top" gear, he or she will find it very difficult to get moving. Is it 

because the rider is weak? No, it's because the high step-up ratio 

of the bicycle's chain and sprockets in that top gear presents a 
mismatch between the conditions (lots of inertia to overcome) 



and their legs (needing to spin at 60-90 RPM for maximum power 

output). On the other hand, selecting a gear that is too low will enable 

the rider to get moving immediately, but limit the top speed they will be 

able to attain. Again, is the lack of speed an indication of weakness in 

the bicyclist's legs? No, it's because the lower speed ratio of the 

selected gear creates another type of mismatch between the 

conditions (low load) and the rider's legs (losing power if spinning faster 

than 90 RPM). It is much the same with electric power sources and 

loads: there must be an impedance match for maximum system 

efficiency. In AC circuits, transformers perform the same matching 

function as the sprockets and chain ("gears") on a bicycle to match 

otherwise mismatched sources and loads.
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It would appear that both voltage and current for the two transformer 

windings are in-phase with each other, at least for our resistive load. 

This is simple enough, but it would be nice to know which way we 

should connect a transformer in order to ensure the proper phase 

relationships be kept. After all, a transformer is nothing more than a set 

of magnetically-linked inductors, and inductors don’t usually come with 

polarity markings of any kind. If we were to look at an unmarked 

transformer, we would have no way of knowing which way to hook it up 

to a circuit to get in-phase (or 180° out-of-phase) voltage and current:



49

Since this is a practical concern, transformer manufacturers have come 

up with a sort of polarity marking standard to denote phase 

relationships. It is called the dot convention, and is nothing more than a 

dot placed next to each corresponding leg of a transformer winding:

Typically, the transformer will come with some kind of schematic 

diagram labeling the wire leads for primary and secondary windings. On 

the diagram will be a pair of dots similar to what is seen above. 

Sometimes dots will be omitted, but when “H” and “X” labels are used 

to label transformer winding wires, the subscript numbers are supposed 

to represent winding polarity. The “1” wires (H1 and X1) represent where 

the polarity-marking dots would normally be placed.

The similar placement of these dots next to the top ends of the primary 

and secondary windings tells us that whatever instantaneous voltage 

polarity is seen across the primary winding will be the same as that 

across the secondary winding. In other words, the phase shift from 

primary to secondary will be zero degrees.
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On the other hand, if the dots on each winding of the transformer 

do not match up, the phase shift will be 180° between primary and 

secondary, like this:
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For resistors in AC circuits the direction of the current flowing through 

them has no effect on the behaviour of the resistor so will rise and fall 

as the voltage rises and falls. The current and voltage reach maximum, 

fall through zero and reach minimum at exactly the same time. i.e, they 

rise and fall simultaneously and are said to be “in-phase” as shown.

We can see that at any point along the horizontal axis that the 

instantaneous voltage and current are in-phase because the current and 

the voltage reach their maximum values at the same time, that is their 

phase angle θ is 0o.
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At 0o the rate of change of the supply voltage is increasing in a positive 

direction resulting in a maximum charging current at that instant in 

time. As the applied voltage reaches its maximum peak value at 90o for 

a very brief instant in time the supply voltage is neither increasing or 

decreasing so there is no current flowing through the circuit.

As the applied voltage begins to decrease to zero at 180o, the slope of 

the voltage is negative so the capacitor discharges in the negative 

direction. At the 180o point along the line the rate of change of the 

voltage is at its maximum again so maximum current flows at that 

instant and so on.

Then we can say that for capacitors in AC circuits the instantaneous 

current is at its minimum or zero whenever the applied voltage is at its 

maximum and likewise the instantaneous value of the current is at its 

maximum or peak value when the applied voltage is at its minimum or 

zero.

From the waveform above, we can see that the current is leading the 

voltage by 1/4 cycle or 90o as shown by the vector diagram. Then we 

can say that in a purely capacitive circuit the alternating voltage lags the 

current by 90o.

We know that the current flowing through the capacitance in AC circuits 



is in opposition to the rate of change of the applied voltage but just like 

resistors, capacitors also offer some form of resistance against the flow of 

current through the circuit, but with capacitors in AC circuits this AC resistance 

is known as Reactance or more commonly in capacitor circuits, Capacitive 

Reactance, so capacitance in AC circuits suffers from Capacitive Reactance.
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We know that this self-induced emf is directly proportional to the rate 

of change of the current through the coil and is at its greatest as the 

supply voltage crosses over from its positive half cycle to its negative 

half cycle or vice versa at points, 0o and 180o along the sine wave.

Consequently, the minimum rate of change of the voltage occurs when 

the AC sine wave crosses over at its maximum or minimum peak voltage 

level. At these positions in the cycle the maximum or minimum currents 

are flowing through the inductor circuit and this is shown below.

These voltage and current waveforms show that for a purely inductive 

circuit the current lags the voltage by 90o. Likewise, we can also say that 

the voltage leads the current by 90o. Either way the general expression 

is that the current lags as shown in the vector diagram. Here the current 

vector and the voltage vector are shown displaced by 90o. The current 

lags the voltage.
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Electrical resonance occurs in an AC circuit when the two reactances 

which are opposite and equal cancel each other out as XL = XC and the 

point on the graph at which this happens is were the two reactance 

curves cross each other.
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Note that when the capacitive reactance dominates the circuit the 

impedance curve has a hyperbolic shape to itself, but when the 

inductive reactance dominates the circuit the curve is non-symmetrical 

due to the linear response of XL.

You may also note that if the circuits impedance is at its minimum at 

resonance then consequently, the circuits admittance must be at its 

maximum and one of the characteristics of a series resonance circuit is 

that admittance is very high. But this can be a bad thing because a very 

low value of resistance at resonance means that the resulting current 

flowing through the circuit may be dangerously high.

We recall from the previous tutorial about series RLC circuits that the 

voltage across a series combination is the phasor sum of VR, VL and VC. 

Then if at resonance the two reactances are equal and cancelling, the 

two voltages representing VL and VC must also be opposite and equal in 

value thereby cancelling each other out because with pure components 

the phasor voltages are drawn at +90o and -90o respectively.

Then in a series resonance circuit as VL = -VC the resulting reactive 

voltages are zero and all the supply voltage is dropped across the 

resistor. Therefore, VR = Vsupply and it is for this reason that series 

resonance circuits are known as voltage resonance circuits, (as opposed 

to parallel resonance circuits which are current resonance circuits).
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The frequency response curve of a series resonance circuit shows that 

the magnitude of the current is a function of frequency and plotting this 

onto a graph shows us that the response starts at near to zero, reaches 

maximum value at the resonance frequency when IMAX = IR and then 

drops again to nearly zero as ƒ becomes infinite. The result of this is that 

the magnitudes of the voltages across the inductor, L and the 

capacitor, C can become many times larger than the supply voltage, 

even at resonance but as they are equal and at opposition they cancel 

each other out.
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Note that when the capacitive reactance dominates the circuit the 

impedance curve has a hyperbolic shape to itself, but when the 

inductive reactance dominates the circuit the curve is non-symmetrical 

due to the linear response of XL.
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As a parallel resonance circuit only functions on resonant frequency, this 

type of circuit is also known as an Rejecter Circuit because at 

resonance, the impedance of the circuit is at its maximum thereby 

suppressing or rejecting the current whose frequency is equal to its 

resonant frequency. The effect of resonance in a parallel circuit is also 

called “current resonance”.

The calculations and graphs used above for defining a parallel 

resonance circuit are similar to those we used for a series circuit. 

However, the characteristics and graphs drawn for a parallel circuit are 

exactly opposite to that of series circuits with the parallel circuits 

maximum and minimum impedance, current and magnification being 

reversed. Which is why a parallel resonance circuit is also called an Anti-

resonance circuit.
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What is the resonant frequency of a series RLC circuit, if R is 47 ohms, 

L is 4 microhenrys and C is 20 picofarads? 19.9 MHz 17.8 MHz 

19.9 kHz 17.8 kHz 

< 17.8 MHz > 

Al Penney

VO1NO

This problem involves using the formula that you will find in Section 1.14 of 

the Advanced Study Guide for calculating the resonant frequency of a series 

RLC circuit. The factors in the formula are: fR = resonant frequency in Hz, pi 

= 3.14, L = inductance in henrys and C = capacitance in farads. You also have 

to be comfortable with changing units as you will see as we show you how to 

answer the question. Since L is in microhenrys, we have to convert it to 

henrys. 4 microhenrys = 0.000 004 henrys or 4.0 x 10-6 if we use scientific 

notation. A similar calculation has to be done to change picofarads to farads. 

20 picofarads = 0.000 000 000 020 farads or 20 x 10-12 farads if we use 

scientific notation. This problem is best solved in steps unless you are really 

comfortable with your calculator. We are assuming that you have a scientific 

calculator. Multiply 0.000 004 by 0.000 000 000 020 and then hit the SQRT 

(square root) key. Your calculator may show the symbol √ for “square root” –

this symbol is used in the formula. Given that your calculator may not handle 

this you might be better off to use the scientific notation function of your 

calculator to do this calculation. For this question L = 4.0 x 10-06 so you 

would key in 4.0 first. Then tap the EXP key and enter - 6. Some calculators 

may automatically enter a 0 in front so your display may appear as -06. Now 

tap the multiply key and enter the value for C, 20 x 10-12, in a similar fashion. 

Now tap the SQRT key. Regardless of which method you employed DO NOT 

clear your calculator. This value will be 8.994 x 10-9 to three decimal places. 

Don’t worry about the numbers beyond three decimal places; we will leave 



them in and deal with them later. Multiply the value the value above by 2 and then by 

pi, 3.14, and tap the = key. This will yield a value of 5.617 x 10-8 to three decimal 

places. Again, don’t worry about the numbers beyond three decimal places; we will 

leave them in and deal with them later. 21 Now comes the easy part. Look for the 

reciprocal key on your calculator; it is usually labeled 1/x. Tap this key and up pops 

17 803 088. DO NOT clear your calculator. Our calculated value is in Hz and our 

answers are given in MHz and kHz. We convert Hz to MHz by dividing 17 803 088 by 

1 000 000, yielding 17.803088 MHz. Converting to kHz we get 17 803.088 kHz. The 

correct answer is shown to two decimal places so our calculated value looks a lot like 

the answer when we round off 17.803088 MHz to 17.8 MHz. 
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What is the value of capacitance (C) in a series RLC circuit, if the circuit 

resonant frequency is 14.25 MHz and L is 2.84 microhenrys? 2.2 

microfarads 44 microfarads 44 picofarads 2.2 picofarads 

< 44 picofarads > 

Al Penney

VO1NO

This is a very practical problem. Imagine that you are trying to construct an 

RLC circuit resonant at a specific frequency. Your junk box yields a capacitor 

or inductor with a fixed value. What is the value of the other component you 

will have to procure? This problem involves using the formula you will find in 

Section 1.14 in the Advanced Study Guide for 23 calculating the resonant 

frequency of a parallel RLC circuit. The factors in the formula are: fR = 

resonant frequency in Hz, pi = 3.14, L = inductance in henrys and C = 

capacitance in farads. You also have to be comfortable with changing units as 

you will see as we show you how to answer the question. However, this 

problem has “thrown you a curve”. Unlike the other resonance calculation 

questions this one gives you the resonant frequency and the value of the 

inductance. You have to find the capacitance. We will have to re-write the 

equation as follows: 1 푓푅2휋 = √퐿퐶 On the left all our values are 

“knowns”. We can use these to find the value of SQRT LC. Once we know this 

we can use it and the value of L to find the value of C. Don’t despair – all will 

be revealed. Before we start crunching numbers we need to do some unit 

conversions. fR = 14.25 MHz = 14 250 000 Hz = 14.25 x 106 Hz. C = 44 

picofarads = 0.000 000 000 044 farads = 44 x 10-12 farads. We want to find 

the value of 1 푓푅2휋 . The simplest route is to use scientific notation. 

1/((14.25 x 106 )(2)(3.14)) = 11.17 x 10-9 We have just calculated the value of 

SQRT (LC). We now want to find the value of LC. To do this we have to 

square 11.17 x 10-9 (multiply it by itself). You can enter the value into your 



calculator and look for the key that squares any value or you can simply enter it again 

and tap the MULTIPLY key. Regardless of the method you employ the result will be 

1.248 x 10-16 to three decimal places. We now know that LC = 1.248 x 10-16 and we 

know the value of L. So the task is to find the value of C, which will be 1.248 x 10-16 

/ L. Plugging in all the numbers we find 1.248 x 10-16 / 28.4 x 10-6 = 43.94 x 10- 12 

farads. The size of the exponent suggests that our answer will be in picofarads, so we 

convert farads to picofarads. If we round this off to 44 picofarads we find we have the 

value needed. 
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What is the resonant frequency of a parallel RLC circuit if R is 4.7 

kilohms, L is 1 microhenry and C is 10 picofarads? 15.9 kHz 50.3 

MHz 50.3 kHz 15.9 MHz 

< 50.3 MHz > 

Al Penney

VO1NO

This problem involves using the formula you will find in Section 1.14 in the 

Advanced Study Guide for 24 calculating the resonant frequency of a parallel 

RLC circuit. The factors in the formula are: fR = resonant frequency in Hz, pi 

= 3.14, L = inductance in henrys and C = capacitance in farads. You also have 

to be comfortable with changing units as you will see as we show you how to 

solve the question. Since L is in microhenrys, we have to convert it to henrys. 

1 microhenry = 0.000 001 henrys or 1.0 x 10-6 if we use scientific notation. A 

similar calculation has to be done to change picofarads to farads. 10 picofarads 

= 0.000 000 000 010 farads or 10 x 10-12. This problem is best solved in steps 

unless you are really comfortable with your calculator. We are assuming that 

you have a scientific calculator. Multiply 0.000 001 by 0.000 000 000 010 and 

then hit the SQRT (square root) key. Your calculator may show the symbol for 

“square root” – this symbol is used in the formula. Given that your calculator 

may not handle this you might be better off to use the scientific notation 

function of your calculator to do this calculation. For this question L = 1.0 x 

10-06. For L you would key in 1.0 first. Then tap the EXP key and enter -6. 

Some calculators may automatically enter a 0 in front so your display may 

appear as -06. Now tap the multiply key and enter the value for C, 10 x 10-12. 

Now tap the SQRT key. Regardless of which method you employed DO NOT 

clear your calculator. This value will be 3.163 x 10-9 to three decimal places. 

Don’t worry about the numbers beyond three decimal places; we will leave 

them in and deal with them later. Multiply the value the value above by 2 and 



then by pi, 3.14, and tap the = key. This will yield a value of 19.85 x 10-9 to three 

decimal places. Again, don’t worry about the numbers beyond three decimal places; 

we will leave them in and deal with them later. Now comes the easy part. Look for the 

reciprocal key on your calculator; it is usually labelled 1/x. Tap this key and up pops 

50 354 739. DO NOT clear your calculator. Our calculated value is in Hz and our 

answers are given in MHz and kHz. We convert Hz to MHz by dividing by 1 000 000, 

yielding 50.354739 MHz. Converting to kHz we get 50354.739 kHz. The correct 

answer is shown to one decimal place so our calculated value looks a lot like the 

answer in MHz when we round off 50.354939 MHz to 50.4 MHz. 
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What is the value of inductance (L) in a parallel RLC circuit, if the 

resonant frequency is 14.25 MHz and C is 44 picofarads? 253.8 

millihenrys 3.9 millihenrys 0.353 microhenry 2.8 microhenrys 

< 2.8 microhenrys > 

Al Penney

VO1NO

This is a very practical problem. Imagine that you are trying to construct an 

RLC circuit resonant at a specific frequency. Your junk box yields a capacitor 

or inductor with a fixed value. What is the value of the other component you 

will have to procure? This problem involves using the formula you will find in 

Section 1.14 in the Advanced Study Guide for 28 calculating the resonant 

frequency of a parallel RLC circuit. The factors in the formula are: fR = 

resonant frequency in Hz, pi = 3.14, L = inductance in henrys and C = 

capacitance in farads. You also have to be comfortable with changing units as 

you will see as we show you how to answer the question. However, this 

problem has “thrown you a curve”. Unlike the other resonance calculation 

questions this one gives you the resonant frequency and the value of the 

capacitance. You have to find the inductance. We will have to re-write the 

equation as follows: 1 푓푅2휋 = √퐿퐶 On the left all our values are 

“knowns”. We can use these to find the value of SQRT LC. Once we know this 

we can use it and the value of C to find the value of L. Don’t despair – all will 

be revealed. Before we start crunching numbers we need to do some unit 

conversions. fR = 14.25 MHz = 14 250 000 Hz = 14.25 x 106 Hz. C = 44 

picofarads = 0.000 000 000 044 farads = 44 x 10-12 farads . We want to find 

the value of 1 푓푅2휋 . The simplest route is to use scientific notation. 

1/((14.25 x 106 )(2)(3.14)) = 11.17 x 10-9 We have just calculated the value of 

SQRT (LC). We now want to find the value of LC. To do this we have to 

square 11.17 x 10-9 (multiply it by itself). You can enter the value into your 



calculator and look for the key that squares any value or you can simply enter it again 

and tap the MULTIPLY key. Regardless of the method you employ the result will be 

1.248 x 10-16 to three decimal places. We now know that LC = 1.248 x 10-16 and we 

know the value of C. So the task is to find the value of L, which will be will be 1.248 

x 10-16 /C. Plugging in all the numbers we find 1.248 x 10-16 / 44 x 10-12 = 2.836 x 

10-6 henrys. The size of exponent, 10-6, suggests that our final answer should be 

expressed in microhenrys so we convert 2.836 x 10-6 henrys to microhenrys by 

multiplying by 1 000 000, 1 x 10-6. This gives us a value of 2.836. To one place of 

decimals this rounds down to 2.8 microhenrys, the same. 
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What is the Q of a parallel RLC circuit, if it is resonant at 14.128 MHz, L 

is 2.7 microhenrys and R is 18 kilohms? 7.51 0.013 71.5 75.1 

< 75.1 > 

Al Penney

VO1NO

Since it is a parallel circuit use the following formula: Q = R/2πfL. Ensure that 

kilohms are converted to ohms, f is converted from MHz to Hz, and 

microhenries are converted to henrys. 
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The time constant, τ is found using the formula T = R x C in seconds.

Therefore the time constant τ is given as: T = R x C = 47k x 1000uF 

= 47 Secs

a) What value will be the voltage across the capacitor at 0.7 time 

constants?

At 0.7 time constants ( 0.7T ) Vc = 0.5Vs. Therefore, Vc = 0.5 x 5V = 2.5V

b) What value will be the voltage across the capacitor at 1 time 

constant?

At 1 time constant ( 1T ) Vc = 0.63Vs. Therefore, Vc = 0.63 x 5V = 3.15V

c) How long will it take to “fully charge” the capacitor?

The capacitor will be fully charged at 5 time constants.

1 time constant ( 1T ) = 47 seconds, (from above). Therefore, 5T = 5 x 47 

= 235 secs

d) The voltage across the Capacitor after 100 seconds?

The voltage formula is given as Vc = V(1 – e(-t/RC)) so this becomes: Vc = 

5(1 – e(-100/47))

Where: V = 5 volts, t = 100 seconds, and RC = 47 seconds from above.



Therefore, Vc = 5(1 – e(-100/47)) = 5(1 – e-2.1277) = 5(1 – 0.1191) = 4.4 volts
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